Answer on Question\#38769 - Physics - Mechanics | Kinematics | Dynamics

A 45.0 kg ice skater stands at rest on the ice. A friend tosses the skater a 5.0 kg ball. The skater and the ball then move backwards across the ice with a speed of $.50 \mathrm{~m} / \mathrm{s}$. what was the speed of the ball at the moment just before the skater caught it?

Solution:

This is a conservation of momentum problem.

Before skater catches the ball, the total momentum in the system is the momentum of the moving ball which is

$$
5 \mathrm{~kg} \times \mathrm{v}_{\text {ball }}
$$

This must be the total momentum after skater catches the ball.

After skater catches the ball, the total mass of the skater and the ball is $45+5=50$ kg ; the momentum of the ball/ skater system is then

$$
\begin{aligned}
& 50 \mathrm{~kg} \cdot 0.5 \frac{\mathrm{~m}}{\mathrm{~s}}=5 \mathrm{~kg} \times \mathrm{v}_{\text {ball }} \\
& \mathrm{v}_{\text {ball }}=\frac{50 \mathrm{~kg} \cdot 0.5 \frac{\mathrm{~m}}{\mathrm{~s}}}{5 \mathrm{~kg}}=5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Answer: speed of the ball was $5 \mathrm{~m} / \mathrm{s}$.

