Answer on Question\#38678, Physics, Molecular Physics

1. Heat, obtained from heater in time t is $Q=P \cdot t$ by definition of power. From the other side, amount of heat needed to rise temperature of water from 20 to 100 degrees is $Q=c m \Delta T=c \rho_{w} V \Delta T$, where c is heat capacity, ρ_{w} is the density of the water, V is volume of water and $\Delta T=T_{1}-T_{2}$ is the difference between initial and final temperatures. Using last two equations, obtain:

$$
P t=c \rho_{w} V \Delta T \Rightarrow t=\frac{c \rho_{w} V \Delta T}{P}=\frac{4200 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \cdot 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 0.6 \cdot 10^{-3} \mathrm{~m}^{3} \cdot 80 \mathrm{~K}}{2500 \mathrm{~W}}=81 \mathrm{~s} .
$$

2. Since in last 20 seconds water is not at 100 degrees, none of it will boil in last 20 seconds.
