A wagon with a width of 2.4 m , moving at a speed of 15 m per second, was shot through by a bullet perpendicular to the movement of the wagon. The distance between the two bullet holes in the wagon's walls is 6 cm . What is the speed of the bullet ?

The speed of bullet is:

$$
v_{b}=\frac{S}{t}
$$

where S - is a wagon width.
During time t a wagon will move at distance d :

$$
t=\frac{d}{v_{w}}
$$

So:

$$
\begin{gathered}
v_{b}=\frac{S}{\frac{d}{v_{w}}}=\frac{S v_{w}}{d} \\
v_{b}=\frac{2.4 \mathrm{~m} * 15 \mathrm{~m} / \mathrm{s}}{0.06 \mathrm{~m}}=600 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Answer: $v_{b}=600 \mathrm{~m} / \mathrm{s}$

