Centre of gravity of a hollow cone?

Solution.

Take the apex of the cone shown in Figure as the origin. The cone is symmetric about x axis, therefore y-coordinate of centre of gravity is given $y_{c}=0$.

Consider the cone as split into an infinite number of rings.
I mean rings.
When we calculate center of gravity of a uniform solid cone we consider the cone as split into an infinite number of disks. When we calculate center of gravity of a hollow cone we consider the cone as split into an infinite number of rings.

Consider one such ring of thickness $d x$ at x .

Radius of ring $y=\frac{r}{h} x$
Mass of ring $d m=\rho \cdot d V=\rho(2 \pi \cdot y \cdot d s) t$
$d m=\rho \cdot\left(2 \pi \frac{r}{h \cos \alpha} x d x\right) t$
where ρ-density and $\frac{d x}{d s}=\cos \alpha, t-$ thickness of cone side.

ds - height of the ring's side
t - thickness of a cone side (thickness of a side of the ring).

The x-coordinate of centre of gravity is given by
$x_{c}=\frac{\int x d m}{\int d m}$
or

$$
x_{c}=\frac{\int_{0}^{h} x \rho \cdot\left(2 \pi \frac{r}{h \cos \alpha} x d x\right) t}{\int_{0}^{h} \rho \cdot\left(2 \pi \frac{r}{h \cos \alpha} x d x\right) t}=\frac{\int_{0}^{h} x^{2} d x}{\int_{0}^{h} x d x}=\frac{\left.\frac{x^{3}}{3}\right|_{0} ^{h}}{\left.\frac{x^{2}}{2}\right|_{0} ^{h}}=\frac{2}{3} h .
$$

The distance of centre of gravity of hollow cone from the vertex is $(2 / 3) h$ and from the base is (1/3)h.

Answer. $y_{c}=0, x_{c}=\frac{2}{3} h$.

