Answer on Question \#38573, Physics, Mechanics

Let us examine motion on each of three parts of the distance.
I. Motion with acceleration $5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ for 5 seconds. Here, velocity is $v=v_{0}+a t=5 t$. For $t=5 \mathrm{~s}$, $v=5 \cdot 5=25 \frac{\mathrm{~m}}{\mathrm{~s}}$.
II. Motion with constant velocity $v=25 \frac{\mathrm{~m}}{\mathrm{~s}}$ for 50 seconds.
III. Motion with retardation for 10 seconds. Using formula $v=v_{0}+a t$ find the retardation, $0=25+10 \cdot a \Rightarrow a=-2.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. Hence, velocity as a function of time is $v=25-2.5 t$ (If time starts from zero at third part of the track).

Velocity graph is

The distance covered is sum of distances covered on each part of the road:
$S=\int_{0}^{5} 5 t d t+50 \cdot 50+\int_{0}^{10}(25-2.5 t) d t=5 \underline{\underline{2}}_{\underline{\frac{t}{5}}}^{\underline{2}}\left|+2500+\left(25 t-2.5 \underline{\underline{t}}_{\underline{2}}^{\underline{2}}\right)\right|_{0}^{10}=2690 m$ (area under the velocity curve).

