Answer on Question \#38572, Physics, Electric Circuits

For an accelerated motion, velocity as a function of time is $v(t)=v_{0}+a t$, where v_{0} is the initial velocity and a is the acceleration. Knowing that initial velocity is zero, obtain $v(t)=a t$. Also, knowing velocity at $t=1.25 \mathrm{~s}$, obtain $10 \frac{\mathrm{~m}}{\mathrm{~s}}=a \cdot 1.25 \Rightarrow a=\frac{10 \frac{\mathrm{~m}}{\mathrm{~s}}}{1.25 \mathrm{~s}}=8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad$ - this is the acceleration of the Olympic gold medalist.

Knowing the acceleration, it is easy to find distance, covered in $1.25 \mathrm{~s}: \quad S=\frac{a t^{2}}{2}=\frac{8 \cdot(1.25)^{2}}{2}=6.25 \mathrm{~m}$.

