Answer on Question \#38570, Physics, Mechanics

We are given $\quad v_{0}=0 \frac{\mathrm{~m}}{\mathrm{~s}} ; S=100 \mathrm{~m} ; t=8 \mathrm{~s} ; a=$ const .
First, let us find the acceleration. The equation of motion with zero initial velocity is $S=\frac{a t^{2}}{2}$.
Hence, knowing that car traveled 100 m in 8 seconds, obtain $100=\frac{a 8^{2}}{2} \Rightarrow a=3.125 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ - this is the acceleration.
Knowing the acceleration we know explicit equation of motion $S(t)=\frac{3.125 t^{2}}{2}$. Thus, for 5 seconds, $S(t=5)=\frac{3.125 \cdot 5^{2}}{2}=39.1 \mathrm{~m}$.
Average velocity might be found by formula $\bar{v}=\frac{1}{T} \int_{0}^{T} v(t) d t$. Velocity as a function of time is $v(t)=a t=3.125 t$. For 8 seconds, obtain $\quad \bar{v}=\frac{1}{8} \int_{0}^{8} 3.125 t d t=\frac{1}{8} \frac{3.125 \cdot 8^{2}}{2} \approx 12.5 \frac{\mathrm{~m}}{\mathrm{~s}} \quad$ - average velocity.

