Answer on Question\#38423 - Engineering - Other

For the free-falling parachutist with linear drag, assume a first jumper is 80 kg and has a drag coefficient of $12 \mathrm{~kg} / \mathrm{s}$. If a second jumper has a drag coefficient of $15 \mathrm{~kg} / \mathrm{s}$ and a mass of 93 kg , how long will it take the second jumper to reach the same velocity as the first jumper reached in 10 s?

Solution:

Taking downward to be positive, we have:

$$
\frac{\mathrm{d} v}{\mathrm{dt}}=\frac{\mathrm{F}}{\mathrm{~m}}=\frac{\mathrm{mg}-\mathrm{kv}}{\mathrm{~m}}=\mathrm{g}-\left(\frac{\mathrm{k}}{\mathrm{~m}}\right) \mathrm{v}
$$

Solving the separable equation, we have

$$
\mathrm{t}+\mathrm{C}=-\mathrm{m} \frac{\ln \left(\mathrm{~g}-\frac{\mathrm{kv}}{\mathrm{~m}}\right)}{\mathrm{k}}
$$

So that

$$
\begin{gathered}
\mathrm{g}-\frac{\mathrm{kv}}{\mathrm{~m}}=A \mathrm{e}^{-\frac{\mathrm{kt}}{\mathrm{~m}}, \text { where } \mathrm{v}=0 \text { when } \mathrm{t}=0 \text {, so } \mathrm{A}=\mathrm{g}} \\
\mathrm{v}=\frac{\operatorname{mg}\left(1-\mathrm{e}^{-\frac{\mathrm{kt}}{\mathrm{~m}}}\right)}{\mathrm{k}}
\end{gathered}
$$

Therefore, after 10 seconds, the first jumper attains a velocity of

$$
\mathrm{v}=\frac{80 \mathrm{~kg} \cdot 9.8 \frac{\mathrm{~N}}{\mathrm{~kg}} \cdot\left(1-\mathrm{e}^{-\frac{12 \frac{\mathrm{~kg}}{\mathrm{~s}} \cdot 10 \mathrm{~s}}{80 \mathrm{~kg}}}\right)}{12 \frac{\mathrm{~kg}}{\mathrm{~s}}}=50.8 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The amount of time it takes the second jumper is

$$
\mathrm{t}=-\mathrm{m} \cdot \frac{\ln \left(1-\frac{\mathrm{kv}}{\mathrm{mg}}\right)}{\mathrm{k}}=-93 \mathrm{~kg} \cdot \frac{\ln \left(1-\frac{15 \frac{\mathrm{~kg}}{\mathrm{~s}} \cdot 50.8 \frac{\mathrm{~m}}{\mathrm{~s}}}{93 \mathrm{~kg} \cdot 9.8 \frac{\mathrm{~N}}{\mathrm{~kg}}}\right)}{15 \frac{\mathrm{~kg}}{\mathrm{~s}}}=11.2 \mathrm{~s},
$$

Answer: the amount of time it takes the second jumper is 11.2 s .

