Answer on Question\#38419 - Physics - Mechanics, Kinematics, Dynamics
Suppose we have 3 vectors:
$\overrightarrow{A C}$ - wind blowing to the North, $|\overrightarrow{A C}|=50$;
$\overrightarrow{C B}$-plane's velocity, $|\overrightarrow{C B}|=200$;
$\overrightarrow{A B}$ - resultant velocity vector.

$$
\overrightarrow{A B}=\overrightarrow{A C}+\overrightarrow{C B}
$$

A B

Using Pythagorean theorem we get:

$$
|\overrightarrow{A B}|=\sqrt{200^{2}-50^{2}}=\sqrt{37500}=50 \sqrt{15}
$$

So the groundspeed of the plane is $50 \sqrt{15} \approx 194 \mathrm{~km} / \mathrm{h}$.
The direction is:

$$
\alpha=\operatorname{atan} \frac{50}{50 \sqrt{15}} \approx 14.5^{\circ}
$$

So the pilot should point the plane 14.5° to the south of east (see the scheme above).

Since the groundspeed is $50 \sqrt{15} \mathrm{~km} / \mathrm{h}$ so she needs $t=\frac{500}{50 \sqrt{15}}=\frac{10}{\sqrt{15}} \approx 2.6$ hours (or 2 hours 35 minutes) to cover 500 km .

