Please, find the speed of a satellite in orbit $\mathbf{2 6 5} \mathbf{~ k m}$ above the surface and the period of the satellite.
The second Newton's law for satellite:

$$
\begin{aligned}
M a & =G \frac{M_{e} M}{(R+h)^{2}} \\
a & =G \frac{M_{e}}{(R+h)^{2}}
\end{aligned}
$$

Where a is the centripetal acceleration:

$$
\frac{v^{2}}{R+h}=G \frac{M_{e}}{(R+h)^{2}}
$$

So, satellite's speed:

$$
v=\sqrt{G \frac{M_{e}}{R+h}}
$$

Using $g=G \frac{M_{e}}{R^{2}} \rightarrow G M_{e}=g R^{2}$

$$
\begin{gathered}
v=R \sqrt{\frac{g}{R+h}} \\
v=6.4 * 10^{6} \mathrm{~m} \sqrt{\frac{10 \mathrm{~m} / \mathrm{s}^{2}}{6.4 * 10^{6} \mathrm{~m}+0.265 * 10^{6} \mathrm{~m}}}=7.84 * 10^{3} \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Satellite's period:

$$
\begin{gathered}
T=\frac{2 \pi(R+h)}{v} \\
T=\frac{2 * 3.14 *\left(6.4 * 10^{6} \mathrm{~m}+0.265 * 10^{6} \mathrm{~m}\right)}{7.84 * 10^{3} \mathrm{~m} / \mathrm{s}}=5.34 * 10^{3} \mathrm{~s}
\end{gathered}
$$

Answer: $v=7.84 * 10^{3} \mathrm{~m} / \mathrm{s}, T=5.34 * 10^{3} \mathrm{~s}$

