Answer on Question\#38360 - Physics - Mechanics

If kinetic energy of a body is increased by 300 percent, then the percentage change in momentum will be how much?

Solution:

p_{1} - initial momentum;
p_{2} - final momentum;
Kinetic energy of a body is increased by 300 percent:
$\frac{E_{2}-E_{1}}{E_{1}} \cdot 100 \%=300 \%$
$\mathrm{E}_{2}-\mathrm{E}_{1}=3 \mathrm{E}_{1}$
$\mathrm{E}_{2}=4 \mathrm{E}_{1}$
Initial and final kinetic energy of a body:
$\mathrm{E}_{1}=\frac{\mathrm{mV}_{1}{ }^{2}}{2}=\frac{\mathrm{m}^{2} \mathrm{~V}_{1}{ }^{2}}{2 \mathrm{~m}}=\frac{\mathrm{p}_{1}^{2}}{2 \mathrm{~m}} \Rightarrow \mathrm{p}_{1}=\sqrt{2 \mathrm{mE}_{1}} ;$
$\mathrm{E}_{2}=\frac{\mathrm{mV}_{2}{ }^{2}}{2}=\frac{\mathrm{m}^{2} \mathrm{~V}_{2}{ }^{2}}{2 \mathrm{~m}}=\frac{\mathrm{p}_{2}^{2}}{2 \mathrm{~m}} \Rightarrow \mathrm{p}_{2}=\sqrt{2 \mathrm{mE}_{2}}$
Increase in momentum:

$$
\begin{gathered}
\frac{p_{2}-p_{1}}{p_{1}} \cdot 100 \%=\frac{\sqrt{2 \mathrm{mE}_{2}}-\sqrt{2 \mathrm{mE}_{1}}}{\sqrt{2 \mathrm{mE}_{1}}} \cdot 100 \%=\frac{\sqrt{\mathrm{E}_{2}}-\sqrt{\mathrm{E}_{1}}}{\sqrt{\mathrm{E}_{1}}} \cdot 100 \%= \\
=\frac{\sqrt{4 \mathrm{E}_{1}}-\sqrt{\mathrm{E}_{1}}}{\sqrt{\mathrm{E}_{1}}} \cdot 100 \%=\frac{\sqrt{\mathrm{E}_{1}}}{\sqrt{\mathrm{E}_{1}}} \cdot 100 \%=100 \%
\end{gathered}
$$

Answer: Increase in momentum will be 100\%.

