Answer on Question\#38323, Physics, Other

Two charged spheres of equal radii when kept at a certain distance attract each other by a force of F. The charges are touched with each other and placed at the same separation again. They now repel each other by a force of $F / 4$. Find the ratio of the charges

Solution

At first the force between the charged spheres is attractive with magnitude F :

$$
F=k \frac{|Q \| q|}{d^{2}}
$$

where Q - the charge with larger absolute value, q - the charge with smaller absolute value, d the distance between charges, k-Coulomb's constant.

Since the two spheres are identical, when they are touched the charges rearrange themselves to a new equilibrium distribution which must have a like charge on each sphere. Since the total available charge is $Q+q$, each spheres has $\frac{Q+q}{2}$ of charge.

At second, the new force is repulsive and has magnitude $F / 4$:

$$
\frac{F}{4}=k \frac{\left|\frac{Q+q}{2}\right|\left|\frac{Q+q}{2}\right|}{d^{2}}=\frac{1}{4} k \frac{|Q+q|^{2}}{d^{2}}
$$

Now we have

$$
\left|Q\left\|q\left|=|Q+q|^{2} \rightarrow\right| Q\right\| q\right|=Q^{2}+q^{2}+2 Q q .
$$

$Q q=-|Q||q|-$ because initially the charges has different signs. Since

$$
Q^{2}+q^{2}+2 Q q=-Q q \rightarrow Q^{2}+q^{2}+3 Q q=0
$$

We have a quadratic equation for Q.
The discriminant

$$
D=(3 q)^{2}-4 q^{2}=5 q^{2} .
$$

Solutions are

$$
\begin{gathered}
Q_{1}=\frac{-3 q+\sqrt{5} q}{2}=q\left(\frac{\sqrt{5}-3}{2}\right) \text { and } \\
Q_{2}=\frac{-3 q-\sqrt{5} q}{2}=-q\left(\frac{\sqrt{5}+3}{2}\right) \\
Q=-q\left(\frac{ \pm \sqrt{5}+3}{2}\right)
\end{gathered}
$$

The ratio of the charges is

$$
\frac{Q}{q}=-\left(\frac{ \pm \sqrt{5}+3}{2}\right) .
$$

Answer: $-\left(\frac{ \pm \sqrt{5}+3}{2}\right)$.

