Answer on Question \#38270 - Physics - Mechanics | Kinematics | Dynamics

A piece of copper wire [$a=1.7^{*} 10^{\wedge} 5 /$ degrees celsius] has a length of exactly 50 meters when at a temperature of 120 degrees celsius. what will be the increase in length if its tempurature is rasied to 232

Solution:

$\alpha=1.7 \times 10^{-5{ }^{\circ}} \mathrm{C}^{-1}-$ thermal expansion coefficient ;
$\mathrm{L}=50 \mathrm{~m}-$ length of the wire;
$\Delta \mathrm{T}=232^{\circ} \mathrm{C}-120^{\circ} \mathrm{C}=112^{\circ} \mathrm{C}-$ temperature increase;

The final length of the wire will be:
$\mathrm{L}_{2}=\mathrm{L} \cdot(1+\alpha \cdot \Delta \mathrm{T})=50 \mathrm{~m} \cdot\left(1+112^{\circ} \mathrm{C} \cdot 1.7 \times 10^{\left.-5{ }^{\circ} \mathrm{C}^{-1}\right)=50.095 \mathrm{~m}, ~}\right.$
The increase in the length of the wire was

$$
\mathrm{L}_{2}-\mathrm{L}=50.095 \mathrm{~m}-50 \mathrm{~m}=9.5 \mathrm{~cm}
$$

Answer: increase in the length of the wire is 9.5 cm .

