Answer on Question \#38268, Physics, Other

Question:

A boat moves through the water with two forces acting on it. One is a $2.17 \times 103 \mathrm{~N}$ forward push by the motor, and the other is a $1.72 \times 103 \mathrm{~N}$ resistive force due to the water. What is the acceleration of the 1258.6 kg boat? Answer in units of $\mathrm{m} / \mathrm{s} 2$

Answer:

Newton's second law of motion can be expressed in equation form as follows:

$$
\begin{gathered}
\sum \vec{F}=m \vec{a} \\
m a=F-F_{r}
\end{gathered}
$$

where F is force of motor, F_{r} is resistive force
Therefore, acceleration equals:

$$
a=\frac{F-F_{r}}{m}=\frac{2.17 * 10^{3}-1.72 * 10^{3}}{1258.2} \frac{\mathrm{~N}}{\mathrm{~kg}}=0.358 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Answer: $0.358 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

