Answer on Question\#38259, Physics, Other

Question:

Two charged spheres of equal radii when kept at a certain distance attract each other by a force of F. The charges are touched with each other and placed at the same separation again. They now repel each other by a force of $F / 4$. Find the ratio of the charges

Answer:

Coulomb's law states that the electrical force between two charged objects is directly proportional to the product of their charges (and inversely proportional to the square of the distance between them):

$$
F(r)=k \frac{q_{1} q_{2}}{r^{2}}
$$

For initial charges (spheres attract, therefore $q_{1} q_{2}<0$):

$$
F=-\frac{k q_{1} q_{2}}{r^{2}}
$$

When spheres are touched with each other their charges equals:

$$
q^{\prime}=\frac{q_{1}+q_{2}}{2}
$$

Therefore:

$$
\begin{gathered}
\frac{F}{4}=\frac{k\left(q_{1}+q_{2}\right)^{2}}{4 r^{2}} \\
-q_{1} q_{2}=\left(q_{1}+q_{2}\right)^{2}
\end{gathered}
$$

Ratio of the charges equals:

$$
\begin{gathered}
\left(\frac{q_{1}}{q_{2}}\right)^{2}+3 \frac{q_{1}}{q_{2}}+1=0 \\
\frac{q_{1}}{q_{2}}=\frac{-3 \pm \sqrt{5}}{2}
\end{gathered}
$$

Answer: $\frac{q_{1}}{q_{2}}=\frac{-3 \pm \sqrt{5}}{2}$

