Answer on Question\#38258 - Physics - Mechanics

A particle of mass 2 kg is released from rest and slides down a plane inclined at 30 degree to the horizontal. There is a constant resistance force of 4 N . Find the speed of the particle after it has travelled 8 meter

Solution:

First, we can write the Newton's second law along the plane ($\mathrm{F}_{\text {resist }}=4 N$):
$F_{\text {net }}=m a$
$\mathrm{F}_{\text {net }}=(\mathrm{mg})_{\text {slope }}-\mathrm{F}_{\text {resist }}=\mathrm{mg} \cdot \sin \alpha-\mathrm{F}_{\text {resist }}$
(2)in(1):
$\mathrm{mg} \cdot \sin \alpha-\mathrm{F}_{\text {resist }}=\mathrm{ma}$
Acceleration of the car:
$\mathrm{a}=\frac{\mathrm{mg} \cdot \sin \alpha-\mathrm{F}_{\text {resist }}}{\mathrm{m}}=\mathrm{g} \cdot \sin \alpha-\frac{\mathrm{F}_{\text {resist }}}{\mathrm{m}}=$
$=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot \sin 18.4^{\circ}-\frac{4 \mathrm{~N}}{2 \mathrm{~kg}}=1.1 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Equation of motion for the car:
$\mathrm{d}=\frac{\mathrm{at}^{2}}{2}$
$t=\sqrt{\frac{2 d}{a}}$
Rate equation for the car
$\mathrm{V}_{1}=\mathrm{at}=\mathrm{a} \cdot \sqrt{\frac{2 \mathrm{~d}}{\mathrm{a}}}=\sqrt{2 \mathrm{da}}=\sqrt{2 \cdot 8 \mathrm{~m} \cdot 1.1 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=4.2 \frac{\mathrm{~m}}{\mathrm{~s}}$
Answer: the speed of the particle after it has travelled 8 meter is equal to $4.2 \frac{\mathrm{~m}}{\mathrm{~s}}$.

