Answer on Question \#38256 - Physics - Other

In Young's double slit experiment the separation between the slits is d and the wavelength of light used is $6000^{\circ} \mathrm{A}$. If the angular width of the interference fringe formed at distant screen is 1° then the value of d is :
a) 1 mm
b) 0.05 mm
c) 0.03 mm
d)
0.01 mm

Solution

$\lambda=6000 \mathrm{~A}^{0}=6000 \times 10^{-10} \mathrm{~m}-$ wavelength;
$\theta=1^{\circ}-$ angular width of the interference fringe;
$d-$ separation between the slits;
Angular width, $\theta=\frac{\lambda}{d}=1^{\circ}=1^{\circ} \cdot \frac{\pi}{180^{\circ}}$

$$
\mathrm{d}=\frac{180^{\circ} \cdot \lambda}{\pi}=\frac{180^{\circ} \cdot 6000 \times 10^{-10} \mathrm{~m}}{1^{\circ} \cdot \pi}=34.3 \mu \mathrm{~m}=0.03 \mathrm{~mm}
$$

Answer: c) 0.03 mm

