## Answer on Question\#38255-Physics - Other

$$
y=0.1 \sin \pi(0.1 x-2 t)
$$

First let's choose a fixed $x=x_{0}$ and find the period $T$ for t of the wave. Since the sine function has a period of $2 \pi$ so:

$$
\begin{gathered}
\pi\left(0.1 x_{0}-2 t\right)-\pi\left(0.1 x_{0}-2 t_{0}\right)=2 \pi \\
2 \pi T=2 \pi \\
T=1 \text { second }
\end{gathered}
$$

So the period is 1 second; 30 seconds needed to make 30 vibrations.
Now let's discuss how the peek $\left(y_{\max }=0.1\right)$ moves along the x -axis.
When $t=0$ the peek is at $x=5$ because $y_{\max }=0.1=y(5,0)=0.1 \sin \pi(0.1 \cdot 5)$.
When $t=30$ we have:

$$
\begin{gathered}
\pi(0.1 x-2 \cdot 30)=\frac{\pi}{2} \\
0.1 x-60=0.5 \\
x-600=5 \\
x=605
\end{gathered}
$$

So at $t=30$ the peek is at $x=605$ and we get that the wave covers $605-5=600$ meters.

ANSWER: A

