## Answer on Question\# 38215, Physics, Other

A radio-operated car travels 12.0 meters east in 4 seconds then 5.0 meters north in 2 seconds (yes, the car can make 90 degree turns without pausing). (A) Draw a vector map that describes the car's motion, including the car's displacement.(B) Calculate the car's average speed for the entire 6 -second trip. (C) Calculate the car's average velocity (magnitude and direction) for the 6-second trip.

## Solution

(A)


## $\vec{d}$ - the car's displacement.

(B) The car's average speed is

$$
r=\frac{d}{t}
$$

where $d$ - the total distance car travelled, $t$ - the total time of the 6-second trip.

$$
r=\frac{12 m+5 m}{4 s+2 s}=2.8 \frac{m}{s}
$$

(C) The car's average velocity is

$$
\vec{v}=\frac{\vec{s}}{t^{\prime}}
$$

where $\vec{s}$ - the car's displacement, $t$ - the total time of the 6 -second trip.
Magnitude of average velocity is

$$
v=\frac{s}{t}=\frac{\sqrt{(12 m)^{2}+(5 m)^{2}}}{4 s+2 s}=2.2 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Direction of average velocity is

$$
\theta=\tan ^{-1}\left(\frac{5}{12}\right)=21.8^{\circ} \text { north of east. }
$$

