Answer on Question \#38205 - Physics - Mechanics | Kinematics | Dynamics

A rebounder in v basketball has a vertical leap of 1.2 meter. What is his launch speed and "hang time"?

Solution:

$S=1.2 \mathrm{~m}$ - height of vertical leap
$\mathrm{V}=0-$ velocity at the top (turning point)
Acceleration due to gravity, $\mathrm{g}=-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ (since motion is in opposite direction as gravity)
Law of energy conservation:

$$
\begin{gathered}
\frac{\mathrm{mV}}{}{ }^{2} \\
2 \\
\mathrm{~V}^{2}=\frac{\mathrm{mU}^{2}}{2}+\mathrm{mgS} \\
\mathrm{U}=\sqrt{2}+2 \mathrm{gS} \\
-2 \mathrm{gS} \\
=\sqrt{2 \cdot 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 1.2 \mathrm{~m}}=4.9 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Hang time (assuming hang time is the total time from launch to land):
After land, displacement from launch to land is equal to zero:

$$
\begin{gathered}
0=U t_{\mathrm{h}}+\frac{\mathrm{gt}_{\mathrm{h}}{ }^{2}}{2} \\
0=4.9 \mathrm{t}_{\mathrm{h}}-4.9 \mathrm{t}_{\mathrm{h}}{ }^{2} \\
\mathrm{t}_{\mathrm{h}}=1 \mathrm{~s}
\end{gathered}
$$

Answer: launch speed is equal to $4.9 \frac{\mathrm{~m}}{\mathrm{~s}}$; "hang time" is equal to 1 s .

