Answer on Question\#38156 - Physics - Other

A bat flies at a steady rate of $4 \mathrm{~m} / \mathrm{s}$ emitting 90 kHz sound wave and is flying towards a wall. It detects a reflected signal at s frequency. \qquad kHz. Given speed of sound $=340 \mathrm{~m} / \mathrm{s}$.

```
a)90.1 b)92.1 c)91.1 d)93.1
```


Solution:

The bat hears f_{w} coming from the wall. If $v=4 \frac{\mathrm{~m}}{\mathrm{~s}}$ is the magnitude of bat speed, $\mathrm{V}=$ $340 \frac{\mathrm{~m}}{\mathrm{~s}}$ is a speed of sound and f_{w} the frequency the wall receives (and reflects).
Bat is moving source and wall is stationary observer.

$$
\frac{V}{f_{w}}=\frac{V-v}{90 k H z}
$$

Solve equation relative to f_{w} :

$$
\mathrm{f}_{\mathrm{w}}=\frac{90 \mathrm{kHz} \cdot \mathrm{~V}}{\mathrm{~V}-\mathrm{v}}=\frac{90 \mathrm{kHz} \cdot 340 \frac{\mathrm{~m}}{\mathrm{~s}}}{340 \frac{\mathrm{~m}}{\mathrm{~s}}-4 \frac{\mathrm{~m}}{\mathrm{~s}}}=91.1 \mathrm{kHz}
$$

Answer: c) 91.1 kHz

