Answer on Question \#38155 - Physics - Other

Question: the resultant intensity of the interference pattern formed by the two waves represented by, $y_{1}=a_{1} \cdot \cos (\omega t)$ and $y_{2}=a_{2} \cdot \cos \left(\frac{\pi}{2}-\omega t\right)$ is:
a) $a_{1}-a_{2}$;
b) $a_{1}+a_{2}$;
c) $a_{1}^{2}-a_{2}^{2}$;
d) $a_{1}^{2}+a_{2}^{2}$.

Solution: let us represent these two waves in the exponential form:

$$
\begin{gathered}
y_{1}=a_{1} \cdot \cos (\omega t)=\operatorname{Re}\left(a_{1} \cdot e^{i \omega t}\right) \\
y_{2}=a_{2} \cdot \cos \left(\omega t-\frac{\pi}{2}\right)=\operatorname{Re}\left(a_{2} \cdot e^{i\left(\omega t-\frac{\pi}{2}\right)}\right)
\end{gathered}
$$

Here Re means the real part of the complex number. Using this complex form we can easily obtain the resulting wave:

$$
y=y_{1}+y_{2}=a_{1} \cdot e^{i \omega t}+a_{2} \cdot e^{i\left(\omega t-\frac{\pi}{2}\right)}=e^{i \omega t} \cdot\left(a_{1}+e^{-\frac{i \pi}{2}} a_{2}\right)=e^{i \omega t} \cdot\left(a_{1}-i a_{2}\right)
$$

The resultant intensity of the interference pattern is equal to the squared amplitude of the resulting wave:

$$
I=|y|^{2}=\left|e^{i \omega t} \cdot\left(a_{1}-i a_{2}\right)\right|^{2}=\left|\left(a_{1}-i a_{2}\right)\right|^{2}=\left(a_{1}-i a_{2}\right)\left(a_{1}+i a_{2}\right)=a_{1}^{2}+a_{2}^{2}
$$

Answer: d) $a_{1}^{2}+a_{2}^{2}$.

