Answer on Question \#38152, Physics, Other

Question:

A wire of finite length I carrying current I produces magnetic field of B Tesla at a distance of 10 cm on the perpendicular bisector of its length. If this wire is converted into a circular loop of single turn, find the expression for the magnetic field at its center.

Answer:

Ampere's Law:
The integral of B around any closed mathematical path equals μ_{0} times the current intercepted by the area spanning the path

For wire of finite length l carrying current I magnetic field at distance $r=10 \mathrm{~cm}$ equals:

$$
\begin{gathered}
2 \pi r B_{1}=\mu_{0} I \\
B_{1}=\frac{\mu_{0} I}{2 \pi r} \quad\left(\mu_{0} I=2 \pi r B_{1}\right)
\end{gathered}
$$

Biot-Savart law:

$$
B=\frac{\mu_{0}}{4 \pi} \int \frac{d \vec{I} \times \vec{r}}{|r|^{2}}
$$

For circular loop with radius $R=\frac{l}{2 \pi}$ carrying current I magnetic field at its center equals:

$$
\begin{gathered}
B_{2}=\frac{\mu_{0}}{4 \pi} I \frac{2 \pi R}{R^{2}}=\frac{\mu_{0} I}{2 R}=\frac{\pi \mu_{0} I}{l} \\
B_{2}=\frac{\pi \mu_{0} I}{l}=\frac{2 \pi^{2} r}{l} B_{1}
\end{gathered}
$$

Answer: $B_{2}=\frac{2 \pi^{2} r}{l} B_{1}$

