Answer on Queston\#38147 - Physics - Other

A sinusoidal wave is described by

$y(x, t)=0.4 \sin 20.4(x-95.5 t) \mathrm{cm}$

where x is the position along the wave propagation. Determine the amplitude, wave number, wavelength, frequency and velocity of the wave.

Solution:

From the equation:

$$
\begin{aligned}
& y(x, t)=0.4 \sin (20.4(x-95.5 t)) \mathrm{cm} \\
& y(x, t)=0.4 \sin (20.4 x-1948.2 t) \mathrm{cm}
\end{aligned}
$$

Amplitude: $\mathrm{A}=0.4 \mathrm{~cm}=0.004 \mathrm{~m}$
Wave number: $\mathrm{k}=20.4 \mathrm{~cm}^{-1}=2040 \mathrm{~m}^{-1}$
Frequency: $\omega=1948.2 \mathrm{~Hz}$.
To get wavelength:

$$
\lambda=\frac{2 \pi}{\mathrm{k}}=\frac{2 \pi}{20.4 \mathrm{~cm}^{-1}}=0.308 \mathrm{~cm}=3080 \mu \mathrm{~m}
$$

To get wave velocity:

$$
\mathrm{V}=\lambda \cdot \mathrm{f}=\lambda \cdot \frac{\omega}{2 \pi}=3080 \mu \mathrm{~m} \cdot \frac{1948.2 \mathrm{~Hz}}{2 \pi}=9.425 \times 10^{6} \frac{\mu \mathrm{~m}}{\mathrm{~s}}=9.42 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer: $\mathrm{A}=0.004 \mathrm{~cm}$
$\mathrm{k}=2040 \mathrm{~m}^{-1}$
$\omega=1948.2 \mathrm{~Hz}$.
$\lambda=3080 \mu \mathrm{~m}$
$\mathrm{V}=9.42 \frac{\mathrm{~m}}{\mathrm{~s}}$.

