Answer on Question \#38115, Physics, Other

Let φ denote the angle between vertical line and position of the pendulum. Then, from one side, torque is $\vec{M}=\vec{L} \times \vec{r}$, and $\quad M=m g l \sin \varphi$. From the other side, according to equations of rigid body dynamics, $\frac{d \vec{L}}{d t}=\vec{M}$, and $L=I \omega$, where moment of inertia of pendulum is $I=m l^{2}$. Hence $\quad M=I \frac{d \omega}{d t}=m l^{2} \beta=m l^{2} \ddot{\varphi} \quad(\quad \beta$ is angular acceleration).
Thus, $\quad m g l \sin \varphi=m l^{2} \ddot{\varphi} \Rightarrow \ddot{\varphi}-\frac{g}{l} \sin \varphi=0$. For small oscillations $\sin \varphi \approx \varphi$, hence $\quad \ddot{\varphi}-\frac{g}{l} \varphi=0$. General solution of this differential equation is $\varphi(t)=C \sin (\omega t-\delta)$, where $\omega=\sqrt{\frac{g}{l}}$, so motion of pendulum is harmonic. This ends the proof.

For infinite length of pendulum, $\quad T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{l}{g}} \rightarrow \infty$, hence period is infinite (independent of length).

