Answer on Question #38115, Physics, Other

Let φ denote the angle between vertical line and position of the pendulum. Then, from one side, torque is $\vec{M} = \vec{L} \times \vec{r}$, and $M = mgl \sin \varphi$. From the other side, according to equations of rigid body dynamics, $\frac{d\vec{L}}{dt} = \vec{M}$, and $L = I \omega$, where moment of inertia of pendulum is $I = ml^2$. Hence $M = I \frac{d\omega}{dt} = ml^2 \beta = ml^2 \ddot{\varphi}$ (β is angular acceleration). Thus, $mgl \sin \varphi = ml^2 \ddot{\varphi} \Rightarrow \ddot{\varphi} - \frac{g}{l} \sin \varphi = 0$. For small oscillations $\sin \varphi \approx \varphi$, hence $\ddot{\varphi} - \frac{g}{l} \varphi = 0$. General solution of this differential equation is $\varphi(t) = C \sin(\omega t - \delta)$, where $\omega = \sqrt{\frac{g}{l}}$, so motion of pendulum is harmonic. This ends the proof.

For infinite length of pendulum, $T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{l}{g}} \rightarrow \infty$, hence period is infinite (independent of length).