Answer on Question 38092, Physics, Optics From the picture in attachment one can easily find that

$$
h=A B \sin (\alpha-\phi)=\frac{d}{\cos \alpha} \sin (\alpha-\phi)
$$

We will use this formula for displacement of beam with parallel plate

$$
\Delta x=\frac{d}{\cos \alpha} \sin (\alpha-\beta)
$$

where α is angle of incidence, β is angle of refraction and d is thikness. We can find those angles for both plates easily from Snell law:

$$
\beta_{1}=\arcsin \frac{\sin \alpha}{n_{1}}, \quad \beta_{2}=\arcsin \frac{\sin \alpha}{n_{2}}
$$

So we find

$$
\begin{gathered}
\Delta x=\Delta x_{1}+\Delta x_{2}=\frac{d_{1}}{\cos \alpha} \sin \left(\alpha-\beta_{1}\right)+\frac{d_{2}}{\cos \alpha} \sin \left(\alpha-\beta_{2}\right)= \\
\left.=\frac{d_{1}}{\cos \alpha} \sin \left(\alpha-\arcsin \frac{\sin \alpha}{n_{1}}\right)+\frac{d_{2}}{\cos \alpha} \sin \left(\alpha-\arcsin \frac{\sin \alpha}{n_{2}}\right)\right) \approx 7.7 \mathrm{~cm}
\end{gathered}
$$

