Answer on Question \#37964, Physics, Mechanics

Question:

a 200 kg load is hung on a wire of length of 4.00 m , cross sectional area 0.200 x $10^{\wedge}-4 \mathrm{~m} \wedge 2$,and Young's modulus $8.00 \times 10^{\wedge} 10 \mathrm{~N} / \mathrm{m}^{\wedge} 2$. What is its increase in length?

Answer:

Hooke's law can be expressed in equation form as follows:

$$
\frac{F}{A}=E \frac{\Delta l}{l}
$$

where E is Young's modulus, A - cross section area, l - length of the wire, F force, Δl is increase in length.

In our case force equals weight: $F=m g$
Therefore, stretch of the wire equals:

$$
\Delta l=\frac{m g}{A} \frac{l}{E} \cong 4.91 \mathrm{~mm}
$$

Answer: 4.91 mm

