Answer on Question \#37962, Physics, Mechanics | Kinematics | Dynamics

Let index one corresponds to sphere, and index two to cylinder. Hence, one has set of parameters $R_{1,} m, \rho$ for sphere and R_{2}, h, m, ρ for cylinder (R is radius, h is the height of cylinder, m and ρ are mass and density respectively).
Mass and density of cylinder are equal. Hence, $m=\frac{4}{3} \pi \rho R_{1}^{3}=h \pi R_{2}^{2} \rho \quad$, which yields $\quad R_{2}^{2}=\frac{4 R_{1}^{3}}{3 h}$. The moment of inertial of solid ball is $J_{1}=\frac{2}{5} m R_{1}^{2}$ and of cylinder $J_{2}=\frac{1}{2} m R_{2}^{2}$. Hence,

$$
\frac{J_{1}}{J_{2}}=\frac{4 R_{1}^{2}}{5 R_{2}^{2}}=\frac{3 h}{5 R_{1}} .
$$

Thus, which moment of inertia is higher depends on proportions of height of cylinder and radius of spherical ball (if their masses are equal):

$$
\begin{aligned}
& J_{1}>J_{2} \Rightarrow h>\frac{5 R_{1}}{3} \\
& J_{1}<J_{2} \Rightarrow h<\frac{5 R_{1}}{3} .
\end{aligned}
$$

