## Answer on Question \#37958, Physics, Other

## Question:

When the temperature of a thin silver $\left[\alpha=19 \times 10-6\left(C^{\circ}\right)-1\right]$ rod is increased, the length of the rod increases by $1.9 \times 10-3 \mathrm{~cm}$. Another rod is identical in all respects, except that it is made from gold $\left[\alpha=14 \times 10-6\left(C^{\circ}\right)-1\right]$. By how much $\Delta L$ does the length of the gold rod increase when its temperature increases by the same amount as that for the silver rod?

## Answer:

The change in the units' length when temperature change can be expressed as:

$$
\Delta l=l_{0} \alpha \Delta T
$$

where $l_{0}$ is initial length, $\alpha$ is linear expansion coefficient, $\Delta T$ is change of temperature.

The change of length for silver rod equals:

$$
\Delta l_{s}=l_{0} \alpha_{s} \Delta T
$$

The change of length for gold rod equals:

$$
\Delta l_{g}=l_{0} \alpha_{g} \Delta T
$$

Therefore:

$$
\begin{gathered}
\frac{\Delta l_{s}}{\Delta l_{g}}=\frac{\alpha_{s}}{\alpha_{g}} \\
\Delta l_{g}=\Delta l_{s} \frac{\alpha_{g}}{\alpha_{s}}=1.4 * 10^{-3} \mathrm{~cm}
\end{gathered}
$$

Answer: $1.4 * 10^{-3} \mathrm{~cm}$

