## Answer on Question \#37951 - Physics - Thermodynamics

## Question:

During a brisk run, an adult human generates heat at a rate of about 1270 W . To remove this heat by evaporative cooling, what mass of water per second $\mathrm{m} / \mathrm{t}$ must be evaporated from the body as sweat? The latent heat of vaporization of water at $37^{\circ} \mathrm{C}$ (typical body temperature) is $24.2 \times 10^{5} \mathrm{~J} / \mathrm{kg}$.

## Answer:

Amount of heat equals:

$$
Q=L m
$$

where $L$ is latent heat of vaporization of water, $m$ - mass of the water.
Dividing by time:

$$
\frac{Q}{t}=P=L\left(\frac{m}{t}\right)
$$

Therefore mass of water per second $\left(\frac{m}{t}\right)$ equals:

$$
\frac{m}{t}=\frac{P}{L}=\frac{1270 \mathrm{~W}}{24.2 * 10^{5} \frac{\mathrm{~J}}{\mathrm{~kg}}}=5.25 * 10^{-4} \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

Answer: $5.25 * 10^{-4} \frac{\mathrm{~kg}}{\mathrm{~s}}$

