Answer on Question\#37950 - Physics - Other

The brass bar and the aluminum bar in the drawing are each attached to an immovable wall. At $21.9^{\circ} \mathrm{C}$ the air gap between the rods is $1.55 \times 10-3 \mathrm{~m}$. At what temperature will the gap be closed?

Solution:

$\Delta \mathrm{L}=\alpha \mathrm{L}_{0} \Delta \mathrm{~T}$ gives for the expansion of the aluminum

$$
\begin{equation*}
\Delta \mathrm{L}_{\mathrm{A}}=\alpha_{\mathrm{A}} \mathrm{~L}_{\mathrm{A}} \Delta \mathrm{~T} \tag{1}
\end{equation*}
$$

and the expansion of the brass

$$
\begin{equation*}
\Delta \mathrm{L}_{\mathrm{B}}=\alpha_{\mathrm{B}} \mathrm{~L}_{\mathrm{B}} \Delta \mathrm{~T} \tag{2}
\end{equation*}
$$

Taking the coefficients of thermal expansion for aluminum ($\alpha_{A}=23 \times 10^{-6} \mathrm{~K}^{-1}$) and brass ($\alpha_{B}=19 \times 10^{-6} \mathrm{~K}^{-1}$) adding Equations (1) and (2), and solving for ΔT give:

$$
\Delta \mathrm{T}=\frac{\Delta \mathrm{L}_{\mathrm{A}}+\Delta \mathrm{L}_{\mathrm{B}}}{\alpha_{\mathrm{A}} \mathrm{~L}_{\mathrm{A}}+\alpha_{\mathrm{B}} \mathrm{~L}_{\mathrm{B}}}=\frac{1.55 \times 10^{-3} \mathrm{~m}}{23 \times 10^{-6} \mathrm{~K}^{-1} \cdot 1 \mathrm{~m}+19 \times 10^{-6} \mathrm{~K}^{-1} \cdot 2 \mathrm{~m}}=25.4^{\circ} \mathrm{C}
$$

The desired temperature is then

$$
\mathrm{T}=21.9^{\circ} \mathrm{C}+25.4^{\circ} \mathrm{C}=47.3^{\circ} \mathrm{C}
$$

Answer: the gap will be closed at temperature $47.3^{\circ} \mathrm{C}$.

