Answer on Question \#37948, Physics, Molecular Physics | Thermodynamics

Question:

When resting, a person has a metabolic rate of about 7.84×105 joules per hour. The person is submerged neck-deep into a tub containing $2.06 \times 103 \mathrm{~kg}$ of water at $20.9^{\circ} \mathrm{C}$. If the heat from the person goes only into the water, find the water temperature in degrees Celsius after half an hour.

Answer:

$$
Q=c m\left(T_{2}-T_{1}\right)
$$

where m is mass, $T_{2}-T_{1}$ - change of temperature, Q is amount of heat.
Therefore, final temperature equals:

$$
T_{2}=T_{1}+\frac{Q}{c m}
$$

Amount of heat equals:

$$
Q=7.84 * 10^{5} \frac{\mathrm{~J}}{\mathrm{~h}} * 0.5 \mathrm{~h}=3.92 * 10^{5} \mathrm{~J}
$$

Finally:

$$
T_{2}=T_{1}+\frac{Q}{c m}=20.9+\frac{3.92 * 10^{5}}{4183 * 2.06 * 10^{3}}=21.16^{\circ} \mathrm{C}
$$

Answer: $21.2^{\circ} \mathrm{C}$

