Answer on Question\#37930 - Physics - Other

Question:

The cavity within a copper $\left[\beta=51 \times 10-6\left(C^{\circ}\right)-1\right]$ sphere has a volume of $1.190 \times$ $10-3 \mathrm{~m} 3$. Into this cavity is placed $1.100 \times 10-3 \mathrm{~m} 3$ of benzene $[\beta=1240 \times 10-6$ $\left.\left(C^{\circ}\right)-1\right]$. Both the copper and the benzene have the same temperature. By what amount $\Delta \mathrm{T}$ should the temperature of the sphere and the benzene within it be increased, so that the liquid just begins to spill out?

Answer:

The change in the units' volume when temperature change can be expressed as:

$$
\Delta V=V_{0} \beta \Delta T
$$

where V_{0} is initial volume, β is volumetric temperature expansion coefficient, ΔT is change of temperature.

Therefore, final volume equals:

$$
V_{f}=V_{0}+\Delta V=V_{0}(1+\beta \Delta T)
$$

The liquid just begins to spill out if $V_{f \text { benzene }}=V_{f \text { cavity }}$:

$$
V_{\text {cavity }}\left(1+\beta_{\text {copper }} \Delta T\right)=V_{\text {benzene }}\left(1+\beta_{\text {benzene }} \Delta T\right)
$$

Therefore:

$$
\Delta T=\frac{V_{\text {cavity }}-V_{\text {benzene }}}{\beta_{\text {benzene }}-\beta_{\text {copper }}}=0.07569^{\circ} \mathrm{C}
$$

Answer: $0.07569^{\circ} \mathrm{C}$

