## Answer on Question\#37928, Physics, Other

## Question:

When the temperature of a thin silver $\left[\alpha=19 \times 10-6\left(C^{\circ}\right)-1\right]$ rod is increased, the length of the rod increases by $3.1 \times 10-3 \mathrm{~cm}$. Another rod is identical in all respects, except that it is made from gold [ $\left.\alpha=14 \times 10-6\left(C^{\circ}\right)-1\right]$. By how much $\Delta L$ does the length of the gold rod increase when its temperature increases by the same amount as that for the silver rod?

Answer:
The increasement of length of the rod is given by formula

$$
\Delta L=\alpha L_{0} \Delta T
$$

where $\alpha$ - is linear expansion coefficient of the rod, $L_{0}$ - initial length of the rod, $\Delta T$ increasement of temperature of the rod.

The initial length and the increasement of temperature of the silver and the gold rods are the same, so we can write an equation

$$
\frac{\Delta L_{s}}{\alpha_{s}}=\frac{\Delta L_{g}}{\alpha_{g}}
$$

where $\Delta L_{s}, \alpha_{s}$ - the increasement of length and the linear expansion coefficient of the silver rod and $\Delta L_{g}, \alpha_{g}$ - the increasement of length and the linear expansion coefficient of the gold rod.

So we can find $\Delta L_{g}$

$$
\begin{gathered}
\Delta L_{g}=\frac{\alpha_{g}}{\alpha_{s}} \Delta L_{s} \\
\Delta L_{g}=\frac{14 \times 10^{-6}}{19 \times 10^{-6}} \cdot 3.1 \times 10^{-3}=2.3 \times 10^{-3} \mathrm{~cm}
\end{gathered}
$$

The answer is: $\Delta \mathbf{L}_{\mathrm{g}}=\mathbf{2 . 3} \times \mathbf{1 0}^{\mathbf{- 3}} \mathbf{c m}$

