Answer on Question 37896, Physics, Electrodynamics Radius of Mercury is $R_{m}=2440 \mathrm{~km}$. Mass of Mercury is $M_{m}=3.3 \cdot 10^{23} \mathrm{~kg}$. Radius of orbit is $R_{o}=R_{m}+260 \mathrm{~km}=2700 \mathrm{~km}$. Knowing that we can write down condition of equilibrium of gravitational and centrifugal forces:

$$
\frac{G m M_{m}}{R_{o}^{2}}=m \frac{v^{2}}{R_{o}}
$$

From where we find

$$
v=\sqrt{\frac{G M_{m}}{R_{o}}}=\sqrt{6.67 \cdot 10^{-11} \cdot 3.3 \cdot 10^{23}} 2700 \cdot 10^{3} \approx 2855.2 \mathrm{~m} / \mathrm{s}
$$

Knowing speed on orbit we can find the period:

$$
T=2 \pi R_{o} / v=5938.6 s \approx 1.65 \text { hours }
$$

