Answer on Question\#37874, Physics, Other

Question:

what is the displacment of object performing simple harmonic motion when kinetic and potiential energy are equal?

Answer:

Let us consider a harmonic oscillator with total energy which is the sum of kinetic energy T and potential energy U:

$$
E=T+U
$$

or

$$
E=\frac{m v^{2}}{2}+\frac{k x^{2}}{2}
$$

where m - is a mass of the object, v - its velocity, x - its displacement, k - a coefficient characterizing the system.

If at some moment of time the kinetic energy T is equal to potential energy U then the displacement of the object is

$$
x=\sqrt{\frac{m v^{2}}{k}}
$$

or

$$
x=\sqrt{\frac{2 T}{k}}=\sqrt{\frac{E}{k}}
$$

