Answer on Question\#37807, Physics, Mechanics

Question:

A 38.0 kg child is in a swing that is attached to ropes 1.50 long. The acceleration of gravity is 9.81 $\mathrm{m} / \mathrm{s}^{\wedge} 2$. Find the gravitational potential energy associated with the child relative to the child's lowest position under the following condition: when the rope makes a 34.0 degree angle with the vertical.

Answer:

The gravitational potential energy of the child relative to the child's lowest position is

$$
U=m g h
$$

where m - is the mass of the child, g - acceleration of gravity, h - the height of the child relative to the child's lowest position.

From the similarity of triangles that appears from the child's displacement from vertical we have

$$
h=b \cos \alpha
$$

where α is angle that rope makes with the vertical and b is

$$
b=\frac{l}{\cos \alpha}-l
$$

where I the length of the rope.

So we have

$$
h=l(1-\cos \alpha)
$$

and the potential energy is

$$
\begin{gathered}
U=m g l(1-\cos \alpha) \\
U=38.0 \cdot 9.81 \cdot 1.50 \cdot\left(1-\cos 34.0^{\circ}\right)=95.60 \mathrm{~J}
\end{gathered}
$$

The answer is: $\mathbf{U}=95.60 \mathrm{~J}$

