Answer on Question\#37803 - Physics - Mechanics

Question:

A 38.0 kg child is in a swing that is attached to ropes 1.50 m long. The acceleration of gravity is $9.81 \mathrm{~m} / \mathrm{s}^{\wedge} 2$. Find the gravitational potential energy associated with the child relative to the child's lowest position under the following conditions:
a) when the ropes are horizontal.
b) when the ropes make 34.0 degree angle with the vertical.

Answer:

a) Change of potential energy equals:

$$
\Delta U=m g \Delta h
$$

where Δh is change of height.
When the ropes are horizontal change of height equals length of the ropes:

$$
\Delta h=l
$$

Therefore:

$$
U=m g l=559 \mathrm{~J}
$$

Answer: 559 J
b) Change of potential energy equals:

$$
\Delta U=m g \Delta h
$$

$$
\Delta h=l-l \cos 34=l(1-\cos 34)
$$

Therefore, gravitational potential energy of child equals:

$$
W=m g l(1-\cos 34)=95.6 J
$$

Answer: 95.6J

