Answer on Question\#37802 -Physics - Mechanics | Kinematics | Dynamics

A pendulum bob is released from some initial height such as the speed of the bob at the bottom of the swing is $1.0 \mathrm{~m} / \mathrm{s}$. What is the initial height of the bob? Answer in units of m

Solution:

We can use conservation on Energy equation:

$$
\mathrm{W}_{\mathrm{top}}=\mathrm{W}_{\text {bottom }}
$$

So for any increase in $K E$, there is an equal decrease in $P E$.
At the initial height all the energy is PE since the mass isn't moving $\left(\mathrm{W}_{\mathrm{KE}}=0\right)$. At the bottom of the swing, where $v=1 \frac{\mathrm{~m}}{\mathrm{~s}}$, the energy is all converted to $K E\left(\mathrm{~W}_{\mathrm{PE}}=0\right)$.

$$
\begin{gathered}
\mathrm{mgh}=\frac{\mathrm{mv}^{2}}{2} \\
h=\frac{\mathrm{v}^{2}}{2 \mathrm{~g}}=\frac{\left(1 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=51 \times 10^{-3} \mathrm{~m}
\end{gathered}
$$

Answer: height of the bob is $51 \times 10^{-3} \mathrm{~m}$.

