

Answer on Question#37801 - Physics – Other

A 4.2×10^3 kg car accelerates from rest at the top of a driveway that is sloped at an angle of 18.4 degrees with the horizontal. An average frictional force of 4.1×10^3 N impedes the car's motion so that the car's speed at the bottom of the driveway is 4.9 m/s.

the acceleration of gravity is 9.81 m/s^2 . What is the length of the driveway?

Solution:

First, we can write the Newton's second law along the slope:

$$F_{\text{net}} = ma \quad (1)$$

$$F_{\text{net}} = (mg)_{\text{slope}} - F_{\text{friction}} = mg \cdot \sin \alpha - F_{\text{friction}} \quad (2)$$

(2)in(1):

$$mg \cdot \sin \alpha - F_{\text{friction}} = ma$$

Acceleration of the car:

$$\begin{aligned} a &= \frac{mg \cdot \sin \alpha - F_{\text{friction}}}{m} = g \cdot \sin \alpha - \frac{F_{\text{friction}}}{m} = \\ &= 9.81 \frac{\text{m}}{\text{s}^2} \cdot \sin 18.4^\circ - \frac{4.1 \cdot 10^3 \text{N}}{4.2 \cdot 10^3 \text{kg}} = 2.12 \frac{\text{m}}{\text{s}^2} \end{aligned}$$

Equation of motion for the car:

$$d = \frac{at^2}{2} \quad (3)$$

Rate equation for the car ($V_1 = 4.9 \frac{\text{m}}{\text{s}}$):

$$V_1 = at \Rightarrow t = \frac{V_1}{a} \quad (4)$$

(4)in(3):

$$d = \frac{a \left(\frac{V_1}{a} \right)^2}{2} = \frac{V_1^2}{2a} = \frac{\left(4.9 \frac{\text{m}}{\text{s}} \right)^2}{2 \cdot 2.12 \frac{\text{m}}{\text{s}^2}} = 5.7 \text{ m}$$

Answer: length of the driveway is equal to 5.7m.