Answer on Question\#37800-Physics - Mechanics

A $2.7 \times 10^{\wedge} 3 \mathrm{~kg}$ car accelerates from rest under the action of two forces. One is a forward force of 1154 N provided by traction between the wheels and the road. The other is a 915 N resistive force due to various frictional forces. How far must the car travel for its speed to reach $2.1 \mathrm{~m} / \mathrm{s}$? Answer in units of m

Solution:

Net force acting on Car:

$$
\mathrm{F}_{\mathrm{net}}=1154 \mathrm{~N}-915 \mathrm{~N}=239 \mathrm{~N}
$$

So acceleration (from the Newton's second law) a is given by:

$$
\mathrm{a}=\frac{\mathrm{F}_{\mathrm{net}}}{\mathrm{~m}}=\frac{239 \mathrm{~N}}{2.7 \times 10^{3} \mathrm{~kg}}=0.89 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Rate equation for car:

$$
V=\mathrm{at} \Rightarrow t=\frac{V}{a}
$$

Equation of motion for the car:

$$
\mathrm{S}=\frac{\mathrm{at}^{2}}{2}=\frac{\mathrm{a}}{2} \cdot\left(\frac{\mathrm{~V}}{\mathrm{a}}\right)^{2}=\frac{\mathrm{V}^{2}}{2 \mathrm{a}}=\frac{\left(2.1 \frac{\mathrm{~m}}{\mathrm{~S}}\right)^{2}}{2 \cdot 0.89 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=2.5 \mathrm{~m}
$$

Answer: the car traveled distance 2.5 m .

