Answer on Question\#37769-Physics - Astronomy

How to calculate the time period of a satellite to complete one revolution around earth's surface?

Solution

The orbit of satellite is stationary. From hence we get that the gravitational force $\frac{G M m}{r^{2}}$ is equal to centrifugal force $m \omega^{2} r$. Here $G=6.67 \cdot 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}}$ is gravitational constant, M is mass of Earth, r is radius of satellite's orbits, $\omega=\frac{2 \pi}{T}$ is angular speed of satellite on orbit, T is period of one revolution around Earth, m is mass of satellite.
$\frac{G M m}{r^{2}}=m \omega^{2} r$
$\frac{G M}{r^{2}}=\omega^{2} r$
$\omega=\sqrt{\frac{G M}{r^{3}}} \Rightarrow$
$T=2 \pi \sqrt{\frac{r^{3}}{G M}}$

Answer:
$T=2 \pi \sqrt{\frac{r^{3}}{G M}}$

