Answer on \#37758 - Physics - Mechanics

Five forces act on an object.
(1) 59 N at 90°
(2) 40 N at 0°
(3) 81 N at 270°
(4) 40 N at 180°
(5) 50 N at 60°

What are the magnitude and direction of a sixth force that would produce equilibrium?

Solution

We can split the forces into their two components, x and y.

$$
\begin{aligned}
& \text { For } \mathrm{x}: \mathrm{F}(\mathrm{x})=-\mathrm{F} \cdot \cos (\theta) \\
& \text { For } \mathrm{y}: \mathrm{F}(\mathrm{y})=-\mathrm{F} \cdot \sin (\theta)
\end{aligned}
$$

The sum of all x-components and y-components must be zero for equilibrum.

$$
\begin{gathered}
\text { For } \mathrm{x}: 0+(-40)+0+40+(-50) \cdot \frac{1}{2}+\mathrm{F}_{\mathrm{x}}=0 \\
\mathrm{~F}_{\mathrm{x}}=25 \mathrm{~N} \\
\text { For } \mathrm{y}:-59+0+81+0+(-50) \cdot \frac{\sqrt{3}}{2}+\mathrm{F}_{\mathrm{y}}=0 \\
\mathrm{~F}_{\mathrm{y}}=21.3 \mathrm{~N}
\end{gathered}
$$

The total force F:

$$
\mathrm{F}=\sqrt{\mathrm{F}_{\mathrm{x}}^{2}+\mathrm{F}_{\mathrm{y}}^{2}}=\sqrt{(25 \mathrm{~N})^{2}+(21.3 \mathrm{~N})^{2}}=32.8 \mathrm{~N}
$$

The angle between the X -axis and the force is:

$$
\theta=\arctan \left(\frac{21.3 \mathrm{~N}}{25 \mathrm{~N}}\right)=40.4^{\circ}
$$

Answer: magnitude of the force: 32.8 N ; angle between the X -axis and the force: 40.4°

