Answer on Question\#37657-Physics - Other

Blood flows through a section of a horizontal artery that is partially blocked by a deposit along the artery wall. As a hemoglobin molecule moves from the narrow region into the wider region, its speed changes from v2 $=0.800 \mathrm{~m} / \mathrm{s}$ to v1 $=0.442$ m / s. What is the change in pressure, P1-P2, that it experiences? The density of blood is 1060 kg/m3.
http://edugen.wileyplus.com/edugen/courses/crs3976/art/qb/qu/c11/c11 q 17.gif

Solution:

In a flow without friction the total pressure as sum of static and dynamic pressure is constant. So we have:

$$
\begin{gathered}
\mathrm{p}_{\mathrm{st}}+\mathrm{p}_{\mathrm{dyn}}=\text { constant } ; \\
\mathrm{p}_{\mathrm{dyn}}=\frac{1}{2} \rho \mathrm{v}^{2}
\end{gathered}
$$

Therefore:

$$
\begin{aligned}
\Delta \mathrm{p}_{\mathrm{st}}=\mathrm{p}_{2 \mathrm{st}}- & \mathrm{p}_{1 \mathrm{st}}=\frac{1}{2} \rho\left(\mathrm{v}_{1}^{2}-\mathrm{v}_{2}^{2}\right)=\frac{1}{2} \cdot 1060 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot\left(\left(0.8 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-\left(0.442 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}\right) \\
= & 236 \mathrm{~Pa}
\end{aligned}
$$

Answer: change in pressure is equal to 236 Pa .

