Answer on Question\#37655, Physics, Other

Question:

Water is flowing down through the pipe shown in the drawing. Point A is 0.410 m higher than B. The speed of the water at A and B are $v A=5.00 \mathrm{~m} / \mathrm{s}$ and $v B=2.78$ m / s. Determine the difference $P B$ - PA in pressures between B and A. The density of water is $1.00 \times 103 \mathrm{~kg} / \mathrm{m} 3$.
http://edugen.wileyplus.com/edugen/courses/crs3976/art/qb/qu/c11/c11 q 19. gif

Answer:

Bernoulli's principle can be expressed as a mathematical equation:

$$
\frac{v^{2}}{2}+g h+\frac{p}{\rho}=\mathrm{const}
$$

where v is the water streams speed, g is the acceleration due to gravity, h is the height, p is the pressure, and ρ is the density of the water.

In our case:

$$
\frac{v_{A}^{2}}{2}+g h_{A}+\frac{p_{A}}{\rho}=\frac{v_{B}^{2}}{2}+g h_{B}+\frac{p_{B}}{\rho}
$$

Therefore:

$$
p_{B}-p_{A}=\rho\left(\frac{v_{A}^{2}}{2}-\frac{v_{B}^{2}}{2}+g\left(h_{A}-h_{B}\right)\right)=12700 \mathrm{~Pa}=12.7 \mathrm{kPa}
$$

Answer: 12.7 kPa

