Answer on Question \#37652-Physics - Other

A glass tube has several different cross-sectional areas with the values indicated in the figure. A piston at the left end of the tube exerts pressure so that mercury within the tube flows from the right end with a speed of $8.0 \mathrm{~m} / \mathrm{s}$. Three points within the tube are labeled A, B, and C.
http://edugen.wileyplus.com/edugen/courses/crs3976/art/qb/qu/c11/r5-1.png
Notes: The drawing is not drawn to scale.
Atmospheric pressure is $1.01 \times 105 \mathrm{~N} / \mathrm{m} 2$; and the density of mercury is 13600 kg/m3.
What is the total pressure at point B ?

Solution:

First, let's find speed at which mercury flowing past point B:
$S_{c} V_{c}=S_{B} V_{B}$
$V_{B}=\left(\frac{S_{c}}{S_{B}}\right) V_{c}=\left(\frac{6.0 \mathrm{~cm}^{2}}{5.6 \mathrm{~cm}^{2}}\right) \cdot 8 \frac{\mathrm{~m}}{\mathrm{~s}}=8.6 \frac{\mathrm{~m}}{\mathrm{~s}}$
Now, let's find the total pressure at point B (pressure equation):
$\frac{1}{2} \rho V_{B}^{2}+p_{B}=\frac{1}{2} \rho V_{C}^{2}+p_{C}$
$\mathrm{p}_{\mathrm{C}}=\mathrm{p}_{\mathrm{atm}}=1.01 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
(2)in(1):
$\mathrm{p}_{\mathrm{B}}=\frac{1}{2} \rho\left(\mathrm{~V}_{\mathrm{C}}^{2}-\mathrm{V}_{\mathrm{B}}^{2}\right)+\mathrm{p}_{\mathrm{atm}}=1.01 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}+\frac{1}{2} \cdot 13600 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot\left(\left(8 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-\left(8.6 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}\right)$

$$
=3.1 \times 10^{4} \mathrm{~Pa}
$$

Answer: total pressure at point B is $3.1 \times 10^{4} \mathrm{~Pa}$.

