Answer on Question\#37649, Physics, Other

Question:

A fountain sends a stream of water straight up into the air to a maximum height of 4.33 m . The effective area of the pipe feeding the fountain is $5.82 \times 10-4 \mathrm{~m} 2$. Neglecting air resistance and any viscous effects, determine how many gallons per minute are being used by the fountain. ($1 \mathrm{gal}=3.79 \times 10-3 \mathrm{~m} 3$)

Answer:

$T+U=$ const - the law of conservation of energy;
T - kinetic energy of water,
U - potential energy of water,

$$
T=\frac{m v^{2}}{2} \quad U=m g h
$$

h - maximum height,
m-mass, v-speed.
In our case: $\quad 0+m g h=\frac{m v_{0}{ }^{2}}{2}+0$
Therefore, initial velocity of water equals: $\quad v_{0}=\sqrt{2 g h}=9.21 \frac{\mathrm{~m}}{\mathrm{~s}}$
Volume of the water equals: $\quad V=A v_{0} t$
A - effective area of the pipe, t - time.
Full volume per 1 minute equals: $V=9.21 \frac{\mathrm{~m}}{\mathrm{~s}} 5.82 * 10^{-4} \mathrm{~m}^{2} * 60 \mathrm{~s}=0.322 \mathrm{~m}^{3}$
Full volume in gallons: $\quad V=\frac{0.322}{3.79 * 10^{-3}}=85$ gallons
Answer: 85 gallons

