Answer on Question\#37585, Physics, Other

Question:

A pipe contains a gradually tapering section in which its diameter decreases from 400 mm to 250 mm . The pipe contains an incompressible fluid of density 1000 kgm-3 and runs full. If the flow velocity is $2 \mathrm{~ms}-1$ in the smaller diameter, determine the velocity in the larger diameter, the volume flow rate and the mass flow rate.

Answer:

Conservation of flow:

$$
\begin{gathered}
v A=\text { const } \\
v_{s} A_{s}=v_{l} A_{l} \\
v_{l}=\frac{v_{s} A_{s}}{A_{l}}=2 \frac{\mathrm{~m}}{\mathrm{~s}} \frac{250^{2}}{400^{2}}=0.78 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Volume equals:

$$
V=A * v * t
$$

Therefore volume flow rate equals:

$$
\frac{\Delta V}{\Delta \mathrm{t}}=A v=\left(v_{s} A_{s}=v_{l} A_{l}\right)=\frac{2 m}{s} * \pi\left(\frac{250 \mathrm{~mm}}{2}\right)^{2}=0.098 \frac{\mathrm{~m}^{3}}{s}
$$

Mass flow rate equals:

$$
\frac{\Delta m}{\Delta \mathrm{t}}=\frac{\Delta V}{\Delta \mathrm{t}} \rho=0.098 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} * 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=98 \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

