

Answer on Question#37529, Physics, Quantum Mechanics

In order to solve Schrodinger's stationary equation $H\psi=E\psi$, one has to find eigenfunctions (wave functions), in which every wave function (in each state respectively) gives a certain eigenvalue (energy). So to say, we obtain eigenstates $\psi_n(q)$ for discrete spectrum and $\psi_f(q)$ for continuous spectrum, and corresponding energies at that states. If one has one energy for each state, then energy levels are not degenerate. In case if there are N eigenstates for one energy, it is said that energy level is N times degenerate. For example, let us have a look at Hydrogen atom wave functions and energies (ignoring spin):

$E_n = -\frac{1}{n^2}$ and $\psi_n = R_{nl}(r)Y_{lm}(\varphi, \theta)$. For fixed quantum number n (fixed energy), quantum numbers might have values $l=0..n-1; m=-l...l$. There are n^2 different states (wave functions) for fixed energy level E_n . Hence, energy levels for Hydrogen atom are n^2 times degenerate.