Answer on Question\#37464, Physics, Other

Question:

Blood flows through a section of a horizontal artery that is partially blocked by a deposit along the artery wall. As a hemoglobin molecule moves from the narrow region into the wider region, its speed changes from $\mathrm{v} 2=0.800 \mathrm{~m} / \mathrm{s}$ to $\mathrm{v} 1=0.411$ m / s. What is the change in pressure, P1-P2, that it experiences? The density of blood is $1060 \mathrm{~kg} / \mathrm{m} 3$.

Answer:

Bernoulli's principle can be expressed as a mathematical equation:

$$
\frac{v^{2}}{2}+g h+\frac{p}{\rho}=\text { const }
$$

where v is the blood streams speed, g is the acceleration due to gravity, h is the height, p is the pressure, and ρ is the density of the blood.

In our case:

$$
\begin{gathered}
\frac{v_{1}^{2}}{2}+\frac{p_{1}}{\rho}=\frac{v_{2}^{2}}{2}+\frac{p_{2}}{\rho} \\
p_{1}-p_{2}=\frac{\rho}{2}\left(v_{2}^{2}-v_{1}^{2}\right)=\frac{1060 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}{2}\left(0.8^{2}-0.411^{2}\right) \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}}=250 \mathrm{~Pa}
\end{gathered}
$$

Answer: 250 Pa

